Bottom-up solution synthesis of narrow nitrogen-doped graphene nanoribbons
نویسندگان
چکیده
منابع مشابه
Bottom-up solution synthesis of narrow nitrogen-doped graphene nanoribbons.
Large quantities of narrow graphene nanoribbons with edge-incorporated nitrogen atoms can be synthesized via Yamamoto coupling of molecular precursors containing nitrogen atoms followed by cyclodehydrogenation using Scholl reaction.
متن کاملBoron doped graphene nanoribbons
Submitted for the MAR07 Meeting of The American Physical Society Boron doped graphene nanoribbons THIAGO MARTINS, Instituto de Fisica Universidade de Sao Paulo, HIROKI MIWA, Instituto de Fisica, Universidade Federal de Uberlandia, ANTONIO J.R. DA SILVA, A. FAZZIO, Instituto de Fisica Universidade de Sao Paulo — We will present a detailed study of the electronic, magnetic and transport propertie...
متن کاملFacile bottom-up synthesis of graphene nanofragments and nanoribbons by thermal polymerization of pentacenes.
To prepare nanosized graphene-like molecules of a defined structure (defined-width graphene nanoribbons or nanofragments) by a simple bottom-up method, thermal polymerization reactions of pentacenes were investigated. By optimizing heat treatment temperature and initial precursor weight, long-length fused pentacene molecules were successfully obtained at least up to octamer (n = 8). Here, the d...
متن کاملBottom-up synthesis of liquid-phase-processable graphene nanoribbons with near-infrared absorption.
Structurally defined, long (>100 nm), and low-band-gap (∼1.2 eV) graphene nanoribbons (GNRs) were synthesized through a bottom-up approach, enabling GNRs with a broad absorption spanning into the near-infrared (NIR) region. The chemical identity of GNRs was validated by IR, Raman, solid-state NMR, and UV-vis-NIR absorption spectroscopy. Atomic force microscopy revealed well-ordered self-assembl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chem. Commun.
سال: 2014
ISSN: 1359-7345,1364-548X
DOI: 10.1039/c4cc00885e